Suitable complements:

WirelessGT
The innovative glove leak testing system without tubes and wires: It’s better to be wireless.

Services
Professional trainings, scheduled preventative maintenance and central spare parts contact.

Very rapid cycle times available

Safe and Rapid Transfer of Precious Content
SKANFOG® SARA – The airlock with gentle H₂O₂ decontamination by micro-nebulization

SKAN AG
Binningerstrasse 116
CH-4123 Allschwil
T +41 61 485 44 44
F +41 61 485 44 45
info@skan.ch
www.skan.ch

SKAN Japan
3008-2, Gusukuma
Urasoe-City, 901-2133
Okinawa, Japan
Phone +81 98 894 2636
info@skan.ne.jp
www.skan.ch

SKAN US, Inc.
7409 ACC Blvd., Suite 200
Raleigh, NC 27617, USA
Phone +1 919 354 6380
sales@us.skan.ch
www.us.skan.ch

Changes may be made as a result of technical progress or improvements in services offered.

SKANFOG® SARA Brochure EN
Material No. 1211707
Version 199695_C / 20140623
Safe and Rapid Transfer with SKANFOG® SARA

SKAN

SKAN, founded in 1968, is one of the pioneer companies in the field of cleanroom equipment and design of isolators for the pharmaceutical industry.

Your needs

- A safe and rapid material transfer process
- Interface between areas with different cleanroom classifications
- A decontamination process that reduces the bio-burden on materials passing through
- Fully validated and automated transfer process

Our solution

SKANFOG® SARA is a safe and rapid material airlock with integrated SKANFOG® technology for a fast and gentle bio-decontamination transfer process. The stainless steel design is suitable for different cleanroom classifications. With its modular design, SKANFOG® SARA is available in three standard sizes and can also be adapted to customer’s requirements. Even loaded, very rapid cycle times are available.

Features and sizes

- Total kill of a 10^6 population of Geobacillus stearothermophilus can be validated and is reproducible
- Once-through unidirectional airflow, integrated catalytic converter and powerful fan for fast decontamination
- Smart airflow guidance means fewer interfaces and easy installation
- Automatic leak testing before each decontamination cycle for maximum safety
- Sealed doors with smart interlock system for minimized risk of bioburden and contamination
- Very rapid cycle times

SKANFOG® SARA is available in different sizes:

- Small: e.g. for pass-throughs
- Medium: e.g. for loading car and transfer carriage
- Large: e.g. for floor loading solutions
- Customized: for special requirements

SKANFOG® H₂O₂ micro-nebulization

Controlling the microbial load within A/B cleanroom classes is a daily challenge. Surface decontamination of the equipment is a time-consuming procedure and validation is often complex. SKANFOG® is decontamination technology based on the micro-nebulization of hydrogen peroxide (H_2O_2). Compared with conventional wiping, it simplifies and enhances both procedure and validation. Moreover, nebulized H_2O_2 in moderate concentrations can be used without concern regarding toxicity, corrosion and persistence. Scientific studies have shown that a total kill of a 10^6 population of the test organism Geobacillus stearothermophilus can be achieved and reproduced. [1]

SKAN, the world’s leading specialist in H_2O_2 decontamination processes, provides consultation and support across all phases of the cycle development and the microbiological validation. SKANFOG technology is used for:

- Room decontamination (e.g. class B and hospitals)
- Open RABS combined with cleanroom
- Closed RABS
- Material transfer airlocks

Airflow through the SKANFOG® SARA

Air is drawn in from the surrounding room (1) and is guided through a HEPA filter (2) into the chamber. Two SKANFOG® nozzles at the top of the chamber nebulize the H_2O_2, which is distributed evenly (3). In order to achieve a good aeration after the decontamination, the air with the H_2O_2 is guided by the unidirectional airflow to the bottom (4). Here it leaves the chamber (5) and is led to an assembly consisting of a catalytic converter, a fan and another HEPA filter (6). After the catalytic converter has degraded the H_2O_2 and the filter has absorbed any remaining particles, the clean exhaust air is guided back to the same room (7).